Numerous open-source and commercial malware detectors are available. However, the efficacy of these tools has been threatened by new adversarial attacks, whereby malware attempts to evade detection using, for example, machine learning techniques. In this work, we design an adversarial evasion attack that relies on both feature-space and problem-space manipulation. It uses explainability-guided feature selection to maximize evasion by identifying the most critical features that impact detection. We then use this attack as a benchmark to evaluate several state-of-the-art malware detectors. We find that (i) state-of-the-art malware detectors are vulnerable to even simple evasion strategies, and they can easily be tricked using off-the-shelf techniques; (ii) feature-space manipulation and problem-space obfuscation can be combined to enable evasion without needing white-box understanding of the detector; (iii) we can use explainability approaches (e.g., SHAP) to guide the feature manipulation and explain how attacks can transfer across multiple detectors. Our findings shed light on the weaknesses of current malware detectors, as well as how they can be improved.
翻译:然而,这些工具的功效受到新的对抗性攻击的威胁,这种攻击使恶意软件试图利用机器学习技术等手段逃避探测。在这项工作中,我们设计了一种依靠地势空间和问题空间操纵的对抗性规避攻击。它使用可解释性指导特征选择,通过查明影响探测的最关键特征来最大限度地规避。然后我们用这次攻击作为基准来评价几个最先进的恶意软件探测器。我们发现(一) 最先进的恶意软件探测器很容易被简单的规避战略所利用,而且很容易被利用现成技术欺骗;(二) 地势空间操纵和问题空间模糊可以结合起来,从而无需对探测器的白箱理解就能规避;(三) 我们可以使用解释性方法(例如,SHAP)来指导特征操纵,并解释攻击如何通过多种探测器转移。我们发现,关于当前恶意软件探测器的弱点,以及如何加以改进。