Max-infinitely divisible (max-id) processes play a central role in extreme-value theory and include the subclass of all max-stable processes. They allow for a constructive representation based on the componentwise maximum of random functions drawn from a Poisson point process defined on a suitable functions space. Simulating from a max-id process is often difficult due to its complex stochastic structure, while calculating its joint density in high dimensions is often numerically infeasible. Therefore, exact and efficient simulation techniques for max-id processes are useful tools for studying the characteristics of the process and for drawing statistical inferences. Inspired by the simulation algorithms for max-stable processes, we here develop theory and algorithms to generalize simulation approaches tailored for certain flexible (existing or new) classes of max-id processes. Efficient simulation for a large class of models can be achieved by implementing an adaptive rejection sampling scheme to sidestep a numerical integration step in the algorithm. We present the results of a simulation study highlighting that our simulation algorithm works as expected and is highly accurate and efficient, such that it clearly outperforms customary approximate sampling schemes. As a byproduct, we also develop here new max-id models, which can be represented as pointwise maxima of general location scale mixtures, and which possess flexible tail dependence structures capturing a wide range of asymptotic dependence scenarios.


翻译:在极端值理论中,最大值(最大偏差)进程在极值理论中发挥着核心作用,包括了所有最稳定过程的亚类。它们允许根据从适合的功能空间定义的 Poisson 点进程产生的随机功能的组件最大值进行建设性代表。从最大值进程中模拟往往因其复杂的随机结构而困难重重,而高度计算其联合密度在数字上往往不可行。因此,最大值进程精确而高效的模拟技术是研究进程特点和绘制统计推断的有用工具。在最大值进程的模拟算法的启发下,我们在这里开发了理论和算法,以便根据某些(现有或新的)最大值进程的灵活(现有或新的)类别,对模拟方法进行总体模拟,可以通过采用适应性拒绝抽样方法,绕过算法中的数字整合步骤。我们介绍了模拟研究的结果,强调我们的模拟算法工作是预期的,并且非常准确和高效,因此,它明显超越了最高值的模型的典型依赖性假设,因此,我们这里的模型是典型的典型的、具有最高值的模型,作为最高值的模型的模型,作为一个产品,也是一个总级的模型的模型的模型的模型,其最高值。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
59+阅读 · 2021年4月12日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
从零推导支持向量机 (SVM)
AI科技评论
10+阅读 · 2019年2月7日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Temporal Point Processes: A Review
Arxiv
0+阅读 · 2021年4月21日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
0+阅读 · 2021年4月15日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2021年4月12日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
从零推导支持向量机 (SVM)
AI科技评论
10+阅读 · 2019年2月7日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员