Magnitude and (co)weightings are quite general constructions in enriched categories, yet they have been developed almost exclusively in the context of Lawvere metric spaces. We construct a meaningful notion of magnitude for flow graphs based on the observation that topological entropy provides a suitable map into the max-plus semiring, and we outline its utility. Subsequently, we identify a separate point of contact between magnitude and topological entropy in digraphs that yields an analogue of volume entropy for geodesic flows. Finally, we sketch the utility of this construction for feature engineering in downstream applications with generic digraphs.
翻译:磁度和( co) 权重是浓缩类别中相当一般的构造, 但是它们几乎完全是在Lawvere 测量空间范围内开发的。 我们根据以下观察, 即表层昆虫为最大增殖提供了合适的地图, 并概述了其效用, 我们根据这个观察, 构建了一个有意义的流程图量概念 。 我们随后在测算得出大地学流体积的类似倍数的测量图中, 确定一个数量和表层昆虫之间的单独联络点 。 最后, 我们勾画了这一构造对于下游应用中具有通用参数的特征工程的实用性 。