Homography transformation has an essential relationship with special linear group and the embedding Lie algebra structure. Although the Lie algebra representation is elegant, few researchers have established the connection between homography estimation and algebra expression. In this paper, we propose Warped Convolution Networks (WCN) to effectively estimate the homography transformation by SL(3) group and sl(3) algebra with group convolution. To this end, six commutative subgroups within SL(3) group are composed to form a homography transformation. For each subgroup, a warping function is proposed to bridge the Lie algebra structure to its corresponding parameters in tomography. By taking advantage of the warped convolution, homography estimation is formulated into several simple pseudo-translation regressions. By walking along the Lie topology, our proposed WCN is able to learn the features that are invariant to homography transformation. It can be easily plugged into other popular CNN-based methods. Extensive experiments on POT benchmark and MNIST-Proj dataset show that our proposed method is effective for both homography estimation and classification.
翻译:同性恋变异与特殊的线性组和嵌入的立方代数结构有着基本的关系。 虽然利代数代表结构是优雅的, 但很少有研究人员在同系数估计和代数表达之间建立了联系。 在本文中, 我们提议了扭曲的进化网络( WCN ), 以有效估计SL(3) 组和 sl(3) 代数变异的同系群变异。 为此, SL(3) 组内的六个交流分组组成了同系体变异。 对于每个分组, 提议了一个扭曲功能, 将利代数结构与其对应的摄影参数连接起来。 通过利用扭曲的共变变法, 将同系估计发展成几种简单的伪变形回归。 通过沿着字体表学走动, 我们提议的WCN 能够了解与同系变异的特征。 它很容易被连接到其他以CNNC 为基础的方法中。 POT 基准和 MNIST-Proj 数据集的广泛实验显示, 我们提出的方法对于同系估计和分类都是有效的。