Let $R(r,n)$ be the $r$th order Reed-Muller code of length $2^n$. The affine linear group $\text{AGL}(n,\Bbb F_2)$ acts naturally on $R(r,n)$. We derive two formulas concerning the number of orbits of this action: (i) an explicit formula for the number of AGL orbits of $R(n,n)$, and (ii) an asymptotic formula for the number of AGL orbits of $R(n,n)/R(1,n)$. The number of AGL orbits of $R(n,n)$ has been numerically computed by several authors for $n\le 10$; result (i) is a theoretic solution to the question. Result (ii) answers a question by MacWilliams and Sloane.


翻译:LetR(r,n)$为美元顺序 Reed-Muller 代码 $2 美元。 折线性组 $\ text{AGL}( n,\ bb F_ 2) 美元自然对 $R( r, n) 美元。 我们得出关于此动作的轨道数的两个公式:(一) AGL 轨道数的明确公式为 $R( n) 美元, (二) AGL 轨道数的简单公式为 $R( n) / R(1 n) 美元。 数位作者用数字计算了 AGL 轨道数 $R( n, n) 美元, 以 10 美元为 美元; 结果 (一) 是问题的一个理论解决方案 。 结果 (二) 回答MacWillims 和 Sloane 的问题。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
17+阅读 · 2020年9月6日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 136】 关关的刷题日记32 Single Number
已删除
将门创投
5+阅读 · 2017年10月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
17+阅读 · 2020年9月6日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 136】 关关的刷题日记32 Single Number
已删除
将门创投
5+阅读 · 2017年10月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员