Bipartite graphs model the relationships between two disjoint sets of entities in several applications and are naturally drawn as 2-layer graph drawings. In such drawings, the two sets of entities (vertices) are placed on two parallel lines (layers), and their relationships (edges) are represented by segments connecting vertices. Methods for constructing 2-layer drawings often try to minimize the number of edge crossings. We use vertex splitting to reduce the number of crossings, by replacing selected vertices on one layer by two (or more) copies and suitably distributing their incident edges among these copies. We study several optimization problems related to vertex splitting, either minimizing the number of crossings or removing all crossings with fewest splits. While we prove that some variants are \NP-complete, we obtain polynomial-time algorithms for others. We run our algorithms on a benchmark set of bipartite graphs representing the relationships between human anatomical structures and cell types.


翻译:双分图在多个应用中模拟两个不相交实体集之间的关系,自然可以绘制为二层图形。在这种绘图中,将两个实体集(顶点)放置在两条平行线(层)上,它们的关系(边)由连接顶点的线段表示。构建二层图的方法通常试图最小化交叉的边的数量。我们使用“顶点分裂”来减少交叉的数量,通过将一层上的选定顶点替换为两个(或多个)副本,并适当分配其连接边。我们研究了与顶点分裂相关的多个优化问题,不论是最小化交叉数还是用最少的分裂消除所有交叉数。虽然我们证明了一些变体是NP完全的,但我们为其他问题获得了多项式时间算法。我们在由人体解剖结构和细胞类型之间关系表示的双分图基准数据集上运行我们的算法。

0
下载
关闭预览

相关内容

49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
62+阅读 · 2020年1月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月29日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
62+阅读 · 2020年1月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员