Social games like the prisoner's dilemma are often used to develop models of the role of emotion in social decision-making. Here we examine an understudied aspect of emotion in such games: how an individual's feelings are shaped by their partner's expressions. Prior research has tended to focus on other aspects of emotion. Research on felt-emotion has focused on how an individual's feelings shape how they treat their partner, or whether these feelings are authentically expressed. Research on expressed-emotion has focused on how an individual's decisions are shaped by their partner's expressions, without regard for whether these expressions actually evoke feelings. Here, we use computer-generated characters to examine how an individual's moment-to-moment feelings are shaped by (1) how they are treated by their partner and (2) what their partner expresses during this treatment. Surprisingly, we find that partner expressions are far more important than actions in determining self-reported feelings. In other words, our partner can behave in a selfish and exploitive way, but if they show a collaborative pattern of expressions, we will feel greater pleasure collaborating with them. These results also emphasize the importance of context in determining how someone will feel in response to an expression (i.e., knowing a partner is happy is insufficient; we must know what they are happy-at). We discuss the implications of this work for cognitive-system design, emotion theory, and methodological practice in affective computing.


翻译:囚犯的进退两难的社会游戏往往被用来发展情感在社会决策中作用的模型。 在这里, 我们检查了这种游戏中情绪的一个研究不足的方面: 一个人的感受是如何被其伴侣的表情所塑造的。 先前的研究倾向于侧重于情感的其他方面。 有关感觉- 情绪的研究侧重于一个人的情感如何塑造他们对待伴侣的方式, 或这些情感是否真实地表达。 有关表达- 情绪的研究侧重于一个人的决定是如何被其伴侣的表情所塑造的, 而不考虑这些表情是否真正引起感情。 在这里, 我们使用计算机生成的字符来检查一个人的瞬间情感是如何被其伴侣的表情所塑造的。 先前的研究倾向于侧重于情感的其他方面。 令人惊讶的是, 我们发现伴侣的表情比确定自我报告情感的行动要重要得多。 换句话说, 我们的伴侣可以以自私和剥削的方式行事, 但是如果他们表现出一种合作的表情模式, 我们就会感到更快乐的合作。 这些结果也会强调一个人的瞬间感觉, 在确定伙伴的策略上, 我们如何理解一个幸福的理论影响, 我们如何看待一个正确的思维, 我们如何理解一个方法的理论, 必须要有什么样的思考。

0
下载
关闭预览

相关内容

Feel,是一款科学地激励用户实现健康生活目标的应用。 想要减肥,塑形,增高,提升活力,睡个好觉,产后恢复……?针对不同的目标,Feel为您定制个性化的健康生活计划,并通过各种记录工具和激励手段帮您实现目标。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员