Brain simulation, as one of the latest advances in artificial intelligence, facilitates better understanding about how information is represented and processed in the brain. The extreme complexity of human brain makes brain simulations only feasible upon high-performance computing platforms. Supercomputers with a large number of interconnected graphical processing units (GPUs) are currently employed for supporting brain simulations. Therefore, high-throughput low-latency inter-GPU communications in supercomputers play a crucial role in meeting the performance requirements of brain simulation as a highly time-sensitive application. In this paper, we first provide an overview of the current parallelizing technologies for brain simulations using multi-GPU architectures. Then, we analyze the challenges to communications for brain simulation and summarize guidelines for communication design to address such challenges. Furthermore, we propose a partitioning algorithm and a two-level routing method to achieve efficient low-latency communications in multi-GPU architecture for brain simulation. We report experiment results obtained on a supercomputer with 2,000 GPUs for simulating a brain model with 10 billion neurons to show that our approach can significantly improve communication performance. We also discuss open issues and identify some research directions for low-latency communication design for brain simulations.


翻译:大脑模拟是人工智能的最新进步之一,它有助于更好地了解大脑中如何表现和处理信息。人类大脑的极端复杂性使得大脑模拟只有在高性能计算机平台上才可行。目前,使用大量相互关联的图形处理器(GPUs)的超级计算机支持大脑模拟。因此,超级计算机中高通量低纬度GPU通信在满足大脑模拟作为高度时间敏感应用的性能要求方面发挥着关键作用。在本文中,我们首先概述了目前利用多功能计算机结构进行大脑模拟的平行技术。然后,我们分析了大脑模拟的通信挑战,并总结了应对此类挑战的通信设计准则。此外,我们建议采用一种隔热算法和双层路由法,以便在多功能计算机结构中实现高效的低纬度通信。我们报告用2 000 GPUPUs的超级计算机为100亿个神经元模拟大脑模型模拟而获得的实验结果,以显示我们的方法可以显著改进通信绩效。我们还讨论开放式问题,并找出低频通信模拟设计的一些研究方向。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
37+阅读 · 2021年9月28日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员