Semantic segmentation of remotely sensed images plays an important role in land resource management, yield estimation, and economic assessment. U-Net, a deep encoder-decoder architecture, has been used frequently for image segmentation with high accuracy. In this Letter, we incorporate multi-scale features generated by different layers of U-Net and design a multi-scale skip connected and asymmetric-convolution-based U-Net (MACU-Net), for segmentation using fine-resolution remotely sensed images. Our design has the following advantages: (1) The multi-scale skip connections combine and realign semantic features contained in both low-level and high-level feature maps; (2) the asymmetric convolution block strengthens the feature representation and feature extraction capability of a standard convolution layer. Experiments conducted on two remotely sensed datasets captured by different satellite sensors demonstrate that the proposed MACU-Net transcends the U-Net, U-NetPPL, U-Net 3+, amongst other benchmark approaches. Code is available at https://github.com/lironui/MACU-Net.
翻译:遥感图像的语义分解在土地资源管理、产量估计和经济评估中起着重要作用。 U-Net是一个深重的编码器解码器结构,经常用于高精确度的图像分解。在本信中,我们纳入了由U-Net不同层生成的多尺度特征,并设计了一个多尺度的连接和不对称革命型U-Net(MACU-Net),用于使用精密分辨率的遥感图像进行分解。我们的设计具有以下优势:(1) 多尺度的跳过连接将低层次和高层次地貌图中包含的语义特征合并并重新组合在一起;(2) 不对称的混凝块加强了标准演化层的特征代表性和特征提取能力。在不同卫星传感器所采集的两套遥感数据集上进行的实验表明,拟议的MACU-Net超越了U-Net、U-NetPPL、U-Net 3+,以及其他基准方法。代码见https://github.com/lironui/MACUNNet。