The rapid growth in the number of devices and their connectivity has enlarged the attack surface and weakened cyber systems. As attackers become increasingly sophisticated and resourceful, mere reliance on traditional cyber protection, such as intrusion detection, firewalls, and encryption, is insufficient to secure cyber systems. Cyber resilience provides a new security paradigm that complements inadequate protection with resilience mechanisms. A Cyber-Resilient Mechanism (CRM) adapts to the known or zero-day threats and uncertainties in real-time and strategically responds to them to maintain the critical functions of the cyber systems. Feedback architectures play a pivotal role in enabling the online sensing, reasoning, and actuation of the CRM. Reinforcement Learning (RL) is an important class of algorithms that epitomize the feedback architectures for cyber resiliency, allowing the CRM to provide dynamic and sequential responses to attacks with limited prior knowledge of the attacker. In this work, we review the literature on RL for cyber resiliency and discuss the cyber-resilient defenses against three major types of vulnerabilities, i.e., posture-related, information-related, and human-related vulnerabilities. We introduce moving target defense, defensive cyber deception, and assistive human security technologies as three application domains of CRMs to elaborate on their designs. The RL technique also has vulnerabilities itself. We explain the major vulnerabilities of RL and present several attack models in which the attacks target the rewards, the measurements, and the actuators. We show that the attacker can trick the RL agent into learning a nefarious policy with minimum attacking effort, which shows serious security concerns for RL-enabled systems. Finally, we discuss the future challenges of RL for cyber security and resiliency and emerging applications of RL-based CRMs.


翻译:由于攻击者越来越精密和机智,仅仅依靠入侵探测、防火墙和加密等传统网络保护,不足以保障网络系统的安全。网络复原力提供了一种新的安全范式,补充了抗御机制的保护不足。一个网络抗御机制(CRM)适应了已知或零天的威胁以及实时和战略上的不确定性,以保持网络系统的关键功能。反馈结构在促成CRM的在线感测、推理和动作方面发挥着关键作用。强化学习(RL)是一系列重要的算法,它集中体现了网络复原力的反馈结构,使CRM能够以对攻击者所知有限的方式对攻击作出动态和顺序的反应。在这项工作中,我们审查了RL网络的文献,并讨论了基于网络的防御能力,以保持网络系统的关键功能。 与CRMM相关的定位、信息相关和与人类相关的网络防御能力,我们引入了C-L目标的防御、防御性网络脆弱性,并解释了RRR的模型本身。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
7+阅读 · 2021年5月25日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员