The Brezzi--Douglas--Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates for anisotropic simplices for the $L^p$ case, $1\leq p\leq\infty$, and shows new estimates for anisotropic prisms with triangular base.
翻译:最近出版的两份出版物分析了关于厌食元素的Brezzi-Douglas-Marini内插错误,第一份是侧重于估算值为2美元的微粒,另一份是考虑估算值为1美元-诺尔米的平行同位素,该捐款提供了美元-p$案例的厌食性微粒的一般估计值,1美元/leq p\leq/infty$,并显示了具有三角基的厌食性棱柱的新估计值。