Turing machine and decision tree have developed independently for a long time. With the recent development of differentiable models, there is an intersection between them. Neural turing machine(NTM) opens door for the memory network. It use differentiable attention mechanism to read/write external memory bank. Differentiable forest brings differentiable properties to classical decision tree. In this short note, we show the deep connection between these two models. That is: differentiable forest is a special case of NTM. Differentiable forest is actually decision tree based neural turing machine. Based on this deep connection, we propose a response augmented differential forest (RaDF). The controller of RaDF is differentiable forest, the external memory of RaDF are response vectors which would be read/write by leaf nodes.
翻译:图灵机和决策树是长期独立开发的。 随着最近不同模型的开发, 它们之间有一个交叉点。 神经图腾机( NTM) 为记忆网络打开了大门。 它使用不同的关注机制来读写/ 写外部记忆库。 不同的森林给古典决策树带来了不同的属性。 在这个简短的注释中, 我们显示了这两种模型之间的深层联系。 也就是说: 不同的森林是NTM的一个特例。 不同的森林实际上是基于树的决策神经感应机。 基于这一深层的联系, 我们提议一个反应增强差异性森林( RaDF) 。 RaDF 的控制器是不同的森林, 外在记忆是可被叶节读/ 写的响应矢量。