Deep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals. The network states emerge in time as a temporal unfolding of the neuron's dynamics. By adjusting the feedback-modulation within the loops, we adapt the network's connection weights. These connection weights are determined via a modified back-propagation algorithm that we designed for such types of networks. Our approach fully recovers standard Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept toward dynamical systems implementations. The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.
翻译:深神经网络是应用最广泛的机器学习工具之一,显示在一系列广泛任务中的出色表现。 我们提出了一个方法,将一个任意大小的深神经网络折叠成一个具有多时延迟反馈环的单一神经元。 这个单中深神经网络只包含一个单一的非线性和适当的反馈信号调制。 这个网络及时作为神经动态的时空显示出来。 通过调整循环中的反馈调控,我们调整了网络的连接权重。 这些连接权重是通过我们为这类网络设计的经修改的后再分析算法确定的。 我们的方法完全恢复标准的深神经网络(DNN), 包括稀有的 DNNN, 并将DNN 概念扩大到动态系统实施。 这个我们称之为Folded- in-t- DNN(Fit-DNN)的新方法在一系列基准任务中表现良好。