Breaking symmetries is a popular way of speeding up the branch-and-bound method for symmetric integer programs. We study fundamental domains, which are minimal and closed symmetry breaking polyhedra. Our long-term goal is to understand the relationship between the complexity of such polyhedra and their symmetry breaking capability. Borrowing ideas from geometric group theory, we provide structural properties that relate the action of the group with the geometry of the facets of fundamental domains. Inspired by these insights, we provide a new generalized construction for fundamental domains, which we call generalized Dirichlet domain (GDD). Our construction is recursive and exploits the coset decomposition of the subgroups that fix given vectors in $\mathbb{R}^n$. We use this construction to analyze a recently introduced set of symmetry breaking inequalities by Salvagnin (2018) and Liberti and Ostrowski (2014), called Schreier-Sims inequalities. In particular, this shows that every permutation group admits a fundamental domain with less than $n$ facets. We also show that this bound is tight. Finally, we prove that the Schreier-Sims inequalities can contain an exponential number of isomorphic binary vectors for a given permutation group $G$, which provides evidence of the lack of symmetry breaking effectiveness of this fundamental domain. Conversely, a suitably constructed GDD for this $G$ has linearly many inequalities and contains unique representatives for isomorphic binary vectors.
翻译:断断对称是加速对称整数程序的分支和约束方法的一种流行方式。 我们研究基本领域, 这些基本领域是最小的和封闭的对称断裂多希拉。 我们的长期目标是了解多希拉及其对称断裂能力的复杂程度之间的关系。 我们从几何组理论中借取想法, 我们提供结构属性, 将该组的行动与基本域的方方面面的几何性联系起来。 受到这些洞察的启发, 我们为基本域提供了新的通用建筑, 我们称之为普惠的 Dirichlet域( GDD) 。 我们的构造是循环的, 利用了以$\ mathb{R ⁇ n 修正矢量的分组的共振分解位置。 我们用这个构造来分析最近推出的一组对称分解不平等的一组, 由Salvagnin( 2018年) 和 Liberti 和 Ostrowski( 3月) 调) 。 特别是, 这显示每个硬度组都承认一个基本域, 低于$ 的平面。 我们的平面的平面, 我们也显示这个直径的直径的平面代表 的平面能够显示这个直径的直径的平方的平的平的平。