Several policy options exist, or have been proposed, to further responsible artificial intelligence (AI) development and deployment. Institutions, including U.S. government agencies, states, professional societies, and private and public sector businesses, are well positioned to implement these policies. However, given limited resources, not all policies can or should be equally prioritized. We define and review nine suggested policies for furthering responsible AI, rank each policy on potential use and impact, and recommend prioritization relative to each institution type. We find that pre-deployment audits and assessments and post-deployment accountability are likely to have the highest impact but also the highest barriers to adoption. We recommend that U.S. government agencies and companies highly prioritize development of pre-deployment audits and assessments, while the U.S. national legislature should highly prioritize post-deployment accountability. We suggest that U.S. government agencies and professional societies should highly prioritize policies that support responsible AI research and that states should highly prioritize support of responsible AI education. We propose that companies can highly prioritize involving community stakeholders in development efforts and supporting diversity in AI development. We advise lower levels of prioritization across institutions for AI ethics statements and databases of AI technologies or incidents. We recognize that no one policy will lead to responsible AI and instead advocate for strategic policy implementation across institutions.


翻译:现有或已提出若干政策选项,以推进负责任的人工智能(AI)的发展和部署; 机构,包括美国政府机构、州、专业协会以及私营和公共部门企业,完全有能力执行这些政策; 然而,由于资源有限,并非所有政策都能够或应当同等优先; 我们界定和审查9项拟议政策,以推进负责任的AI,对各种潜在用途和影响进行排名,并对每一种机构类型建议优先排序; 我们发现,部署前审计和评估以及部署后问责制可能会产生最大影响,但也是阻碍采纳工作的最大障碍; 我们建议美国政府机构和公司高度优先重视部署前审计和评估,而美国国家立法机构应高度优先重视部署后问责; 我们建议美国政府机构和专业协会应高度优先重视支持负责任的AI研究的政策,各国应高度优先重视支持负责任的AI教育。 我们提议,公司可以高度优先重视让社区利益攸关方参与发展努力,并支持AI发展的多样性。 我们建议各机构间对AI道德操守声明和AI技术或事件数据库的优先排序。我们认识到,没有任何一项战略政策能够导致AI和跨机构的战略政策的执行。

0
下载
关闭预览

相关内容

负责任的人工智能是需要相关组织设立人工智能使用的标准。首先,人工智能的使用应该在各方面符合道德和法规;其次,从开发到使用需要有一套健全的管理机制;第三,需要强有力的监管机制来确保其使用时的公平公正、通俗易懂、安全稳定。
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员