Optical wireless communication (OWC) using intensity-modulation and direct-detection (IM/DD) has a channel model which possesses unique features, due to the constraints imposed on the channel input. The aim of this tutorial is to overview results on the capacity of IM/DD channels with input-independent Gaussian noise as a model of OWC channels. It provides the reader with an entry point to the topic, and highlights some major contributions in this area. It begins with a discussion on channel models and how this IM/DD Gaussian channel model comes about, in addition to an explanation of input constraints. Then, it discusses the capacity of the single-input single-output channel, its computation, and capacity bounds and asymptotic capacity results. Then, it extends the discussion to the multiple-input multiple-output setup, and reviews capacity bounds for this channel model. Finally, it discusses multi-user channels modelled as a broadcast channel (downlink) or a multiple-access channel (uplink), with their associated capacity bounds.


翻译:使用强度调控和直接探测(IM/DD)的光学无线通信(OWC)有一个频道模型,由于对频道输入施加的限制,该模型具有独特的特点。这个导师手册的目的是概述IM/DD频道能力的结果,作为OWC频道的一种模式,以输入独立的高斯语噪音作为OWC频道的模型,向读者提供该主题的切入点,并突出这方面的一些主要贡献。它首先讨论频道模型,以及IM/DD Gaussian频道模型在解释输入限制之外是如何产生的。然后,它讨论单输入单输出单输出频道的能力、其计算、容量界限和吸附能力结果。然后,它把讨论扩大到多输入多输出输出装置,并审查该频道模型的能力界限。最后,它讨论模拟的多用户频道(调低链接)或多连接频道(连接)及其相关能力界限。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员