Forecasts help businesses allocate resources and achieve objectives. At LinkedIn, product owners use forecasts to set business targets, track outlook, and monitor health. Engineers use forecasts to efficiently provision hardware. Developing a forecasting solution to meet these needs requires accurate and interpretable forecasts on diverse time series with sub-hourly to quarterly frequencies. We present Greykite, an open-source Python library for forecasting that has been deployed on over twenty use cases at LinkedIn. Its flagship algorithm, Silverkite, provides interpretable, fast, and highly flexible univariate forecasts that capture effects such as time-varying growth and seasonality, autocorrelation, holidays, and regressors. The library enables self-serve accuracy and trust by facilitating data exploration, model configuration, execution, and interpretation. Our benchmark results show excellent out-of-the-box speed and accuracy on datasets from a variety of domains. Over the past two years, Greykite forecasts have been trusted by Finance, Engineering, and Product teams for resource planning and allocation, target setting and progress tracking, anomaly detection and root cause analysis. We expect Greykite to be useful to forecast practitioners with similar applications who need accurate, interpretable forecasts that capture complex dynamics common to time series related to human activity.


翻译:预测有助于企业分配资源和实现目标。在LinkedIn公司,产品所有者利用预测来设定商业目标、跟踪前景并监测健康。工程师利用预测来高效提供硬件。为满足这些需求而制定预测解决方案需要准确和可解释的不同时间序列的预测,分小时至季度频率。我们向FlinkedIn公司提供开放源码的Python图书馆Greykite,用于预测20多个使用案例。它的旗舰算法Silverkite提供了可解释、快速和高度灵活的单向预测,以捕捉时间变化和季节性、自动关系、节假日和递增器等效应。图书馆通过促进数据探索、模型配置、执行和解释,能够实现自我保存的准确性和信任。我们的基准结果表明,在LinkedIn公司,一个用于预测20多个使用案例的公开源码的Greykite图书馆,其资源规划和分配、目标设定和进展跟踪、异常检测和根本原因分析等效果。我们期望Greykite公司能够通过促进数据勘探、模型配置、执行和解释共同的动态,以便预测与需要进行类似复杂预测的人类动态的用户。

0
下载
关闭预览

相关内容

LinkedIn 是一家商业客户导向的社交网络服务网站,网站的目的是让注册用户维护他们在商业交往中认识并信任的联系人,这些人被称为“人脉”(Connections)。用户可以邀请他认识的人成为人脉。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员