Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VISis needed. In this paper, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: "what visualization processes can be assisted by ML?" and "how ML techniques can be used to solve visualization problems?" This survey reveals seven main processes where the employment of ML techniques can benefit visualizations:Data Processing4VIS, Data-VIS Mapping, InsightCommunication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations.Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this paper can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io
翻译:在机器学习(ML)的伟大成功激励下,研究人员运用ML技术进行可视化,以更好地设计、发展和评估可视化的问题。这个称为ML4VIS的研究分支近年来正在日益引起研究关注。为了成功地将ML技术用于可视化,对ML4VIS的整合有条理的理解。在本文中,我们系统地调查了88 ML4VIS研究,目的是回答两个激励性问题:“ML能够帮助什么视觉化进程?”和“如何利用ML技术解决可视化问题?”这一调查揭示了使用ML技术能够有利于可视化的七个主要过程:Data处理4VIS、数据VIS绘图、Insight通讯、Stylimation、VIS互动、VIS阅读和用户描述。这七个过程与MLVS管道中现有的可视化理论模型有关,目的是说明ML辅助ML的可视化作用。ML技术的7个过程正在绘制ML4的ML领域的主要学习任务,而MSL的今后需要的视觉研究领域,MS的MS的S的S的这一视觉研究领域需要能力是ML的视觉研究领域。