Distributed artificial intelligence (AI) has recently accomplished tremendous breakthroughs in various communication services, ranging from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wireless connected devices, random channel fluctuations, and the incumbent services simultaneously running on the same network affect the performance of distributed learning. In this paper, we investigate the interplay between distributed AI workflow and ultra-reliable low latency communication (URLLC) services running concurrently over a network. Using 3GPP compliant simulations in a factory automation use case, we show the impact of various distributed AI settings (e.g., model size and the number of participating devices) on the convergence time of distributed AI and the application layer performance of URLLC. Unless we leverage the existing 5G-NR quality of service handling mechanisms to separate the traffic from the two services, our simulation results show that the impact of distributed AI on the availability of the URLLC devices is significant. Moreover, with proper setting of distributed AI (e.g., proper user selection), we can substantially reduce network resource utilization, leading to lower latency for distributed AI and higher availability for the URLLC users. Our results provide important insights for future 6G and AI standardization.
翻译:最近,分散的人工智能(AI)在各种通信服务中取得了巨大的突破,从防故障工厂自动化到智能城市。当分布式学习通过一组无线连接装置、随机频道波动和同时在同一网络运行的在职服务进行时,影响分布式学习的绩效。在本文中,我们调查分布式的人工智能工作流程和超可靠低潜伏通信(URLLC)服务在网络上同时运行的相互作用。在工厂自动化使用案例中,使用符合3GPP的模拟,我们展示了分布式人工智能设置(例如模型大小和参与装置的数目)对分布式AI的融合时间和URLC应用层性能的影响。除非我们利用现有的5G-NR服务处理机制质量将流量与两种服务分开,否则我们的模拟结果表明,分布式人工智能对URLC设备的可用性影响是巨大的。此外,如果适当设置分布式的人工智能(例如,适当的用户选择),我们可大幅降低网络资源的利用,从而导致分配式AI的宽度降低,并且提高URLC用户的可用性。我们的成果为未来的AI提供了重要见解。