Mobile applications continuously generate DNS queries that can reveal sensitive user behavioral patterns even when communications are encrypted. This paper presents a privacy enhancement framework based on query forgery to protect users against profiling attempts that leverage these background communications. We first mathematically model user profiles as probability distributions over interest categories derived from mobile application traffic. We then evaluate three query forgery strategies -- uniform sampling, TrackMeNot-based generation, and an optimized approach that minimizes Kullback-Leibler divergence -- to quantify their effectiveness in obfuscating user profiles. Then we create a synthetic dataset comprising 1,000 user traces constructed from real mobile application traffic and we extract the user profiles based on DNS traffic. Our evaluation reveals that a 50\% privacy improvement is achievable with less than 20\% traffic overhead when using our approach, while achieving 100\% privacy protection requires approximately 40-60\% additional traffic. We further propose a modular system architecture for practical implementation of our protection mechanisms on mobile devices. This work offers a client-side privacy solution that operates without third-party trust requirements, empowering individual users to defend against traffic analysis without compromising application functionality.


翻译:移动应用持续产生的DNS查询可能泄露敏感的用户行为模式,即使通信内容已加密。本文提出一种基于查询伪造的隐私增强框架,以保护用户免受利用此类后台通信的画像攻击。我们首先将用户画像建模为从移动应用流量中提取的兴趣类别概率分布。随后评估三种查询伪造策略——均匀采样、基于TrackMeNot的生成方法以及一种最小化Kullback-Leibler散度的优化方法——以量化其在混淆用户画像方面的有效性。基于真实移动应用流量构建包含1000条用户轨迹的合成数据集,并依据DNS流量提取用户画像。评估结果表明:采用本文方法可在低于20%流量开销下实现50%的隐私提升,而达到100%隐私保护约需40-60%的额外流量。我们进一步提出模块化系统架构,用于在移动设备上实际部署保护机制。本工作提供了一种无需第三方信任的客户端隐私解决方案,使用户能够在保持应用功能完整的前提下独立防御流量分析攻击。

0
下载
关闭预览

相关内容

域名系统(英文: Domain  Name  System, DNS)是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员