We propose a time value related decision function to treat a classical option pricing problem raised by Hutchinson-Lo-Poggio. In numerical experiments, the new decision function significantly improves the original model of Hutchinson-Lo-Poggio with faster convergence and better generalization performance. By proving a novel universal approximation theorem, we show that our decision function rather than Hutchinson-Lo-Poggio's can be approximated on the entire domain of definition by neural networks. Thus the experimental results are partially explained by the representation properties of networks.


翻译:我们提出了一个时间价值相关决定功能,用于处理Hutchinson-Lo-Poggio提出的典型选择定价问题。在数字实验中,新的决定功能大大改进了Hutchinson-Lo-Poggio的原始模型,加快了趋同速度,提高了一般化性能。 通过证明一个新的通用近似理论,我们证明我们的决定功能,而不是Hutchinson-Lo-Poggio的功能,可以通过神经网络在整个定义领域进行近似。因此,实验结果部分地由网络的代表性特性来解释。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
专知会员服务
30+阅读 · 2020年11月4日
【NeurIPS2020】图网的主邻域聚合
专知会员服务
33+阅读 · 2020年9月27日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Distribution-Dependent Analysis of Meta-Learning
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
专知会员服务
30+阅读 · 2020年11月4日
【NeurIPS2020】图网的主邻域聚合
专知会员服务
33+阅读 · 2020年9月27日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员