We study the probability distribution of age of information (AoI) in arbitrary networks with memoryless service times. A source node generates packets following a Poisson process, and then the packets are forwarded across the network in such a way that newer updates preempt older ones. This model is equivalent to gossip networks that was recently studied by Yates, and for which he obtained a recursive formula allowing the computation for the average AoI. In this paper, we obtain a very simple characterization of the stationary distribution of AoI at every node in the network. This allows for the computation of the average of an arbitrary function of the age. In particular, we can compute age-violation probabilities. Furthermore, we show how it is possible to use insights from our simple characterization in order to substantially reduce the computation time of average AoIs in some structured networks. Finally, we describe how it is possible to use our characterization in order to obtain faster and more accurate Monte Carlo simulations estimating the average AoI, or the average of an arbitrary function of the age.
翻译:我们在无记忆服务时间的任意网络中研究信息年龄(AoI)的概率分布。 源节点在Poisson进程之后生成了包包, 然后在网络中传输, 从而更新更新旧的。 这个模型相当于Yates最近研究的八卦网络, 并且他为此获得了一个循环公式, 允许计算平均 AoI 。 在本文中, 我们获得一个非常简单的描述, 描述AoI 在网络中每个节点的固定分布。 从而可以计算该年龄任意功能的平均值。 特别是, 我们可以计算年龄侵犯概率。 此外, 我们展示了如何利用我们简单特征的洞见, 以大幅缩短某些结构化网络中平均AoI 的计算时间。 最后, 我们描述了如何使用我们的特征来获得更快和更准确的蒙特卡洛模拟, 以估计平均 AoI 或该年龄的任意功能的平均值 。