We introduce HiFi-HARP, a large-scale dataset of 7th-order Higher-Order Ambisonic Room Impulse Responses (HOA-RIRs) consisting of more than 100,000 RIRs generated via a hybrid acoustic simulation in realistic indoor scenes. HiFi-HARP combines geometrically complex, furnished room models from the 3D-FRONT repository with a hybrid simulation pipeline: low-frequency wave-based simulation (finite-difference time-domain) up to 900 Hz is used, while high frequencies above 900 Hz are simulated using a ray-tracing approach. The combined raw RIRs are encoded into the spherical-harmonic domain (AmbiX ACN) for direct auralization. Our dataset extends prior work by providing 7th-order Ambisonic RIRs that combine wave-theoretic accuracy with realistic room content. We detail the generation pipeline (scene and material selection, array design, hybrid simulation, ambisonic encoding) and provide dataset statistics (room volumes, RT60 distributions, absorption properties). A comparison table highlights the novelty of HiFi-HARP relative to existing RIR collections. Finally, we outline potential benchmarks such as FOA-to-HOA upsampling, source localization, and dereverberation. We discuss machine learning use cases (spatial audio rendering, acoustic parameter estimation) and limitations (e.g., simulation approximations, static scenes). Overall, HiFi-HARP offers a rich resource for developing spatial audio and acoustics algorithms in complex environments.
翻译:本文介绍了HiFi-HARP,一个大规模七阶高阶Ambisonics房间脉冲响应数据集,包含通过真实室内场景中的混合声学仿真生成的超过10万个房间脉冲响应。HiFi-HARP结合了来自3D-FRONT资源库的几何结构复杂、带家具的房间模型与混合仿真流程:采用基于波动方程的低频仿真(时域有限差分法)至900 Hz,而900 Hz以上的高频部分则使用光线追踪方法进行仿真。合并后的原始房间脉冲响应被编码到球谐域(AmbiX ACN格式)以用于直接可听化。本数据集通过提供结合波动理论精度与真实房间内容的七阶Ambisonics房间脉冲响应,扩展了先前的工作。我们详细阐述了生成流程(场景与材料选择、阵列设计、混合仿真、Ambisonics编码),并提供了数据集统计信息(房间容积、RT60分布、吸声特性)。通过对比表突出了HiFi-HARP相对于现有房间脉冲响应数据集的新颖性。最后,我们概述了潜在的基准测试任务,如一阶到高阶Ambisonics上采样、声源定位和去混响。我们讨论了机器学习应用场景(空间音频渲染、声学参数估计)以及局限性(例如仿真近似、静态场景)。总体而言,HiFi-HARP为在复杂环境中开发空间音频与声学算法提供了一个丰富的资源。