Vision-and-language navigation (VLN) aims to build autonomous visual agents that follow instructions and navigate in real scenes. To remember previously visited locations and actions taken, most approaches to VLN implement memory using recurrent states. Instead, we introduce a History Aware Multimodal Transformer (HAMT) to incorporate a long-horizon history into multimodal decision making. HAMT efficiently encodes all the past panoramic observations via a hierarchical vision transformer (ViT), which first encodes individual images with ViT, then models spatial relation between images in a panoramic observation and finally takes into account temporal relation between panoramas in the history. It, then, jointly combines text, history and current observation to predict the next action. We first train HAMT end-to-end using several proxy tasks including single step action prediction and spatial relation prediction, and then use reinforcement learning to further improve the navigation policy. HAMT achieves new state of the art on a broad range of VLN tasks, including VLN with fine-grained instructions (R2R, RxR), high-level instructions (R2R-Last, REVERIE), dialogs (CVDN) as well as long-horizon VLN (R4R, R2R-Back). We demonstrate HAMT to be particularly effective for navigation tasks with longer trajectories.
翻译:视觉和语言导航(VLN) 旨在建立自主视觉感官,在真实的场景中遵循指示和导航; 记住以前访问过的地点和采取的行动, VLN的多数方法使用经常性状态执行记忆; 相反, 我们引入了历史认知多式变换器(HAMT), 将长方位历史纳入多式联运决策。 HAMT 有效地将过去的所有全景观测编码为等级视觉变压器(VIT), 它首先将个人图像与VT编码, 然后在全景观察中模拟图像之间的空间关系, 并最终考虑到历史全景之间的时间关系。 然后, 它将文本、历史和当前观察结合起来, 以预测下一步行动。 我们首先用一些代理任务来培训HAMT终端到终端, 包括单步行动预测和空间关系预测, 然后利用强化学习来进一步改进导航政策。 HAMT在甚广范围的VLN任务上实现了新的艺术状态, 包括带有精细指示的VLN(R, RxR), 高级指示(R-R-R) 以及长期导航(R-R-LI) 显示我们-R- RM) 以长期任务。