In the recording studio, producers of Electronic Dance Music (EDM) spend more time creating, shaping, mixing and mastering sounds, than with compositional aspects or arrangement. They tune the sound by close listening and by leveraging audio metering and audio analysis tools, until they successfully creat the desired sound aesthetics. DJs of EDM tend to play sets of songs that meet their sound ideal. We therefore suggest using audio metering and monitoring tools from the recording studio to analyze EDM, instead of relying on conventional low-level audio features. We test our novel set of features by a simple classification task. We attribute songs to DJs who would play the specific song. This new set of features and the focus on DJ sets is targeted at EDM as it takes the producer and DJ culture into account. With simple dimensionality reduction and machine learning these features enable us to attribute a song to a DJ with an accuracy of 63%. The features from the audio metering and monitoring tools in the recording studio could serve for many applications in Music Information Retrieval, such as genre, style and era classification and music recommendation for both DJs and consumers of electronic dance music.


翻译:在录音室,电子舞蹈音乐(EDM)的制作人花更多的时间创造、塑造、混合和掌握声音,而不是组成方面或安排。他们通过密切监听和利用音频计量和音频分析工具来调音音频,直到他们成功地翻转所希望的音调美学。EDM的DJs往往播放符合其声音理想的歌曲。因此,我们建议使用录音室的音频计量和监测工具来分析EDM,而不是依赖传统的低级别音频特征。我们通过简单的分类任务来测试我们的新特写特写集。我们把歌曲分给会播放具体歌曲的DJs。这套新特写和DJ组的重点都针对EDM,因为它考虑到制制片人和DJ文化。这些特写简单的维度减少和机器学习,使我们能够将歌曲分给音频、音响精确度为63%的DJ。录音室的音频计量和监测工具的特征可以用于音乐信息检索系统的许多应用,例如流、风格和时代分类和音乐建议。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员