Traffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization. We address this open question through a comparative analysis between the state of the art in ML and the state of the art in TE. To this end, we first present a novel distributed system for TE that leverages the latest advancements in ML. Our system implements a novel architecture that combines Multi-Agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN) to minimize network congestion. In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE. Our experimental results show that the proposed MARL+GNN solution achieves equivalent performance to DEFO in a wide variety of network scenarios including three real-world network topologies. At the same time, we show that MARL+GNN can achieve significant reductions in execution time (from the scale of minutes with DEFO to a few seconds with our solution).
翻译:交通工程(TE) 是互联网的基本构件 。 在本文中, 我们分析现代机器学习( ML) 方法是否准备用于 TE 优化 。 我们通过对ML 艺术状态与 TE 艺术状态进行比较分析来解决这个未决问题 。 为此, 我们首先为TE 推出一个新的发行系统, 利用ML 的最新进步。 我们的系统实施了一个新颖的架构, 将多功能强化学习( MARL) 和图形神经网络( GNNN ) 结合起来, 以尽量减少网络拥堵。 在我们的评估中, 我们将我们的MARL+GNN 系统与DEFO 相比, DEFO 是一个基于显示TE 艺术状态的分层编程的网络优化器 。 我们的实验结果显示, 拟议的 MARL+GNN 解决方案在广泛的网络情景( 包括三个真实世界网络表) 中取得了与 DEFO 相同的效绩。 与此同时, 我们显示 MAR+GNN 可以在执行时间( 从 分钟到与 DEO 几秒钟的解决方案) 。