Serverless cloud computing is predicted to be the dominating and default architecture of cloud computing in the coming decade (Berkley View on Serverless Computing, 2019). In this paper we explore serverless cloud computing for double machine learning. Being based on repeated cross-fitting, double machine learning is particularly well suited to exploit the enormous elasticity of serverless computing. It allows to get fast on-demand estimations without additional cloud maintenance effort. We provide a prototype implementation DoubleML-Serverless written in Python that implements the estimation of double machine learning models with the serverless computing platform AWS Lambda and demonstrate its utility with a case study.
翻译:无服务器云计算预计将在未来十年成为云计算的主要和默认结构(Berkley View on Serverless Economic, 2019)。 在本文中,我们探索了无服务器云计算以进行双机学习。 基于反复交叉配置, 双机学习特别适合利用无服务器计算的巨大弹性。 它可以快速按需估算而无需额外的云维护努力。 我们提供了在 Python 中撰写的原型执行双ML- Serverless-Serverer, 用无服务器的计算平台AWS Lambda执行双机学习模型的估计, 并用案例研究来展示其实用性。