We present an encoding of a polynomial system into vanishing and non-vanishing constraints on almost-principal minors of a symmetric, principally regular matrix, such that the solvability of the system over some field is equivalent to the satisfiability of the constraints over that field. This implies two complexity results about Gaussian conditional independence structures. First, all real algebraic numbers are necessary to construct inhabitants of non-empty Gaussian statistical models defined by conditional independence and dependence constraints. This gives a negative answer to a question of Petr \v{S}ime\v{c}ek. Second, we prove that the implication problem for Gaussian CI is polynomial-time equivalent to the existential theory of the reals.
翻译:我们把一个多式系统编码成一种对称性、主要是常规矩阵的几乎主要未成年人的消失和非消亡限制,使这个系统在某些领域的可溶性相当于该领域受限的可裁判性。这意味着高斯有条件独立结构的两种复杂结果。首先,所有真正的代数都是建造非空高斯统计模型的居民所必须的,这些统计模型是由有条件的独立和依赖性限制所定义的。这给彼得尔的问题(Petr\v{S}ime\v{c}k)提供了否定的答案。第二,我们证明高斯CI的隐含问题相当于真实存在的理论。