The widespread public deployment of large language models (LLMs) in recent months has prompted a wave of new attention and engagement from advocates, policymakers, and scholars from many fields. This attention is a timely response to the many urgent questions that this technology raises, but it can sometimes miss important considerations. This paper surveys the evidence for eight potentially surprising such points: 1. LLMs predictably get more capable with increasing investment, even without targeted innovation. 2. Many important LLM behaviors emerge unpredictably as a byproduct of increasing investment. 3. LLMs often appear to learn and use representations of the outside world. 4. There are no reliable techniques for steering the behavior of LLMs. 5. Experts are not yet able to interpret the inner workings of LLMs. 6. Human performance on a task isn't an upper bound on LLM performance. 7. LLMs need not express the values of their creators nor the values encoded in web text. 8. Brief interactions with LLMs are often misleading.
翻译:随着大型语言模型(LLM)在最近几个月的广泛公共部署,倡导者、政策制定者和来自许多领域的学者引起了新的关注和参与。这种关注是对这项技术所引发的许多紧迫问题的及时回应,但有时会忽略重要的考虑因素。本文调查了八个可能令人惊讶的论点的证据:1.即使没有针对性的创新,LLMs的能力也随着投资的增加而更加可预测。2.许多重要的LLM行为是随着投资的增加而不可预测地出现的副产品。3. LLMs通常似乎学习并使用外部世界的表示法。4.没有可靠的技术来引导LLM的行为。5.专家们还不能解释LLM的内部运作。6.人类在任务上的表现并不是LLM表现的上限。7. LLMs不必表达其创作者的价值观,也不必表达网页文本中编码的价值观。8.与LLMs的简短互动经常会产生误导。