This paper presents a novel approach of representing dynamic visual scenes with static maps generated from video/image streams. Such representation allows easy visual assessment of motion in dynamic environments. These maps are 2D matrices calculated recursively, in a pixel-wise manner, that is based on the recently introduced concept of Eccentricity data analysis. Eccentricity works as a metric of a discrepancy between a particular pixel of an image and its normality model, calculated in terms of mean and variance of past readings of the same spatial region of the image. While Eccentricity maps carry temporal information about the scene, actual images do not need to be stored nor processed in batches. Rather, all the calculations are done recursively, based on a small amount of statistical information stored in memory, thus resulting in a very computationally efficient (processor- and memory-wise) method. The list of potential applications includes video-based activity recognition, intent recognition, object tracking, video description, and so on.
翻译:本文展示了一种以视频/图像流生成的静态地图代表动态视觉场景的新做法。 这种表达方式便于对动态环境中的动态进行视觉评估。 这些地图是 2D 矩阵, 以像素方式递转计算, 以最近引入的偏心数据分析概念为基础。 偏心作为衡量图像特定像素与其正常性模型之间差异的尺度, 以图像同一空间区域以往读数的平均值和差异计算。 偏心图包含关于场景的时间信息, 实际图像不需要分批存储或处理。 相反, 所有计算都是根据存储在记忆中的少量统计信息进行递转计算, 从而形成一种非常计算高效( 过程和 记忆) 的方法。 潜在应用列表包括视频活动识别、 意向识别、 对象跟踪、 视频描述等等 。