Low rank approximation (LRA) of a matrix is a hot subject of modern computations. In application to Big Data mining and analysis the input matrices are usually so immense that one must apply superfast algorithms, which only access a tiny fraction of the input entries and involve much fewer memory cells and flops than an input matrix has entries. Recently we devised and analyzed some superfast LRA algorithms; in this paper we extend a classical algorithm of iterative refinement of the solution of linear systems of equations to superfast refinement of a crude but reasonably close LRA; we also list some heuristic recipes for superfast a posteriori estimation of the errors of LRA and support our superfast refinement algorithm with some superfast heuristic recipes for a posteriori error estimation of LRA and with superfast back and forth transition between any LRA of a matrix and its SVD. Our algorithm of iterative refinement of LRA is the first attempt of this kind and should motivate further effort in that direction, but already our initial tests are in good accordance with our formal study.
翻译:矩阵的低级别近似值(LRA)是现代计算的一个热题。 在应用大数据挖掘和分析时,输入矩阵通常非常庞大,以至于必须应用超快算法,而超快算法只访问输入条目的一小部分,涉及的内存细胞和软体也比输入矩阵的条目少得多。最近,我们设计并分析了某些超快的LARC算法;在本文中,我们将对线性方程的解决方案进行迭代精炼的经典算法推广到对粗糙但合理接近的LARC进行超快的精炼;我们还列出一些超快的超快配方法,事后估计上帝军的错误,支持我们的超快的精细精细算法,用一些超快的超快超快超快的超快超快超速超快超速超速超常配方法算法,用于估计上帝军的事后误差,以及超快的超快的超快超快的超速超速超速超速超速超速超速超速超速超速超速超速超速超导配方算法体体体体体。 我们的LARTCS的LA及其S的迭演算法是这种组合的超快的超快法的超快法的超快法的超超超超快的超超超超超超超超超超超快的超快的超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超超