Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that are only accessible to end devices (i.e., clients). In many scenarios however, a large proportion of the clients are probably in possession of low-quality data that are biased, noisy or even irrelevant. As a result, they could significantly slow down the convergence of the global model we aim to build and also compromise its quality. In light of this, we propose FedProf, a novel algorithm for optimizing FL under such circumstances without breaching data privacy. The key of our approach is a data representation profiling and matching scheme that uses the global model to dynamically profile data representations and allows for low-cost, lightweight representation matching. Based on the scheme we adaptively score each client and adjust its participation probability so as to mitigate the impact of low-value clients on the training process. We have conducted extensive experiments on public datasets using various FL settings. The results show that FedProf effectively reduces the number of communication rounds and overall time (up to 4.5x speedup) for the global model to converge and provides accuracy gain.


翻译:联邦学习联合会(FL)已经展示出巨大的保护隐私的解决方案,从仅能为终端设备(即客户)获取的分散数据中学习。然而,在许多情形中,很大一部分客户可能拥有偏差、吵闹甚至无关紧要的低质量数据。因此,他们可以大大减缓我们所要建立的全球模式的趋同,并损害其质量。有鉴于此,我们提议FedProf(FedProf),这是一种在这种情形下在不破坏数据隐私的情况下优化FL的新型算法。我们的方法的关键是数据代表性分析和匹配计划,利用全球模型动态地描述数据表示,并允许低成本、轻量度的表示匹配。基于我们适应性地给每个客户评分并调整其参与概率的计划,以减轻低价值客户对培训进程的影响。我们利用各种FL环境对公共数据集进行了广泛的实验。结果显示,FedProf(FedProf)有效地减少了通信周期的数量和总体时间(达4.5x速度),以便全球模型汇集和提供准确收益。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Top
微信扫码咨询专知VIP会员