Modal and nonmodal analyses of fluid flows provide fundamental insight into the early stages of transition to turbulence. Eigenvalues of the dynamical generator govern temporal growth or decay of individual modes, while singular values of the frequency response operator quantify the amplification of disturbances for linearly stable flows. In this paper, we develop well-conditioned ultraspherical and spectral integration methods for frequency response analysis of channel flows of Newtonian and viscoelastic fluids. Even if a discretization method is well-conditioned, we demonstrate that calculations can be erroneous if singular values are computed as the eigenvalues of a cascade connection of the frequency response operator and its adjoint. To address this issue, we utilize a feedback interconnection of the frequency response operator with its adjoint to avoid computation of inverses and facilitate robust singular value decomposition. Specifically, in contrast to conventional spectral collocation methods, the proposed method (i) produces reliable results in channel flows of viscoelastic fluids at high Weissenberg numbers ($\sim 500$); and (ii) does not require a staggered grid for the equations in primitive variables.
翻译:对流体的模型和非模式分析为向动荡过渡的早期阶段提供了基本的洞察力。动态生成器的元值决定了各个模式的暂时增长或衰减,而频率响应操作器的单值则量化线性稳定流的扰动的放大。在本文中,我们开发了完善的超球和光谱集成方法,用于对牛顿和粘合液的频道流进行频率反应分析。即使离散方法条件良好,我们证明,如果单值作为频率响应操作器及其连接器的级联连接的均值计算出来,计算出单值可能是错误的。为了解决这一问题,我们利用频率响应操作器的反馈连接与其连接,以避免反计算,并促进稳健的单值解析。具体地说,与传统的光谱合法不同,拟议方法(i)在高威森堡数字的反凝固液流中产生可靠的结果($\sim 500美元);以及(ii)不需要对原始变量的方程式进行交错格。