Matrix-multiplication units (MXUs) are now prevalent in every computing platform. The key attribute that makes MXUs so successful is the semiring structure, which allows tiling for both parallelism and data reuse. Nonetheless, matrix-multiplication is not the only algorithm with such attributes. We find that many algorithms share the same structure and differ in only the core operation; for example, using add-minimum instead of multiply-add. Algorithms with a semiring-like structure therefore have potential to be accelerated by a general-purpose matrix operation architecture, instead of common MXUs. In this paper, we propose SIMD$^2$, a new programming paradigm to support generalized matrix operations with a semiring-like structure. SIMD$^2$ instructions accelerate eight more types of matrix operations, in addition to matrix multiplications. Since SIMD$^2$ instructions resemble a matrix-multiplication instruction, we are able to build SIMD$^2$ architecture on top of any MXU architecture with minimal modifications. We developed a framework that emulates and validates SIMD$^2$ using NVIDIA GPUs with Tensor Cores. Across 8 applications, SIMD2 provides up to 38.59$\times$ speedup and more than 10.63$\times$ on average over optimized CUDA programs, with only 5% of full-chip area overhead.


翻译:使 MXU 如此成功的关键属性是半导体结构,它允许平行和数据再利用。然而,矩阵倍增并不是具有这些属性的唯一算法。我们发现,许多算法具有相同的结构,而且只在核心操作中存在差异;例如,使用增量最小值而不是增量多元值;因此,具有半环结构的乘数值有可能通过一个通用矩阵操作结构加速,而不是普通的MXU加速。在本文中,我们提议SIMD$2,这是一个支持具有半环结构的通用矩阵操作的新编程模式。SIMD$2,除了矩阵倍增外,SIMD$8的指令加速了8种以上的矩阵操作。由于SIMD$2的指令类似于矩阵倍增指示,因此在任何MXU结构的顶部上只能建立SIMD$2$的优化结构,但只有最低限度的修改。我们开发了一个框架,在SIMD$10.%2美元以上的SIMD$,利用NVISAGPOs 提供超过SA8的普通程序。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员