As electro-optical energy from the sun propagates through the atmosphere it is affected by radiative transfer effects including absorption, emission, and scattering. Modeling these affects is essential for scientific remote sensing measurements of the earth and atmosphere. For example, hyperspectral imagery is a form of digital imagery collected with many, often hundreds, of wavelengths of light in pixel. The amount of light measured at the sensor is the result of emitted sunlight, atmospheric radiative transfer, and the reflectance off the materials on the ground, all of which vary per wavelength resulting from multiple physical phenomena. Therefore measurements of the ground spectra or atmospheric constituents requires separating these different contributions per wavelength. In this paper, we create an autoencoder similar to denoising autoencoders treating the atmospheric affects as 'noise' and ground reflectance as truth per spectrum. We generate hundreds of thousands of training samples by taking random samples of spectra from laboratory measurements and adding atmospheric affects using physics-based modelling via MODTRAN (http://modtran.spectral.com/modtran\_home) by varying atmospheric inputs. This process ideally could create an autoencoder that would separate atmospheric effects and ground reflectance in hyperspectral imagery, a process called atmospheric compensation which is difficult and time-consuming requiring a combination of heuristic approximations, estimates of physical quantities, and physical modelling. While the accuracy of our method is not as good as other methods in the field, this an important first step in applying the growing field of deep learning of physical principles to atmospheric compensation in hyperspectral imagery and remote sensing.
翻译:由于太阳的电光能通过大气传播,它受到吸收、排放和散射等辐射转移效应的影响。模拟这些效应对于地球和大气的科学遥感测量至关重要。例如,超光谱图像是一种数字图像形式,收集了许多(往往是数百个)光波长的像素。传感器测量的光量是光线释放、大气辐射转移以及地面材料反射的结果,所有这些都因多种物理现象产生的每波长变化而不同。因此,测量地面光谱或大气成份需要将每波长的这些不同贡献区分开来。在本文中,我们创建了一个自动编码器,类似于解析自动编码器,将大气影响作为“噪音”和地面反映每光谱的真理。我们在传感器上采集了数十万个培训样本,通过通过MODTRAN(http://modran.clucel.com/modran ⁇ home)的物理光谱模型(http://modran.com/modran_home),通过不同的大气输入领域,对地面的光谱或大气成分进行测量,这个过程最理想地平面的精确过程可以产生一种测量的精确的精确的模型,在高光学模型中,而这种精确的模型的模型中需要一种精确的精确的精确的模型的模型的精确的模型的模型的模型的模型的模型的模型的模型的模型的模型的计算过程是, 需要一种精确的精确的精确的模型的模型的模型的模型的模型的模型的模型的精确的模型的精确的精确的模型,它的精确的精确的模型,它的模型,它的精确的精确的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的精确的精确的精确的精确的模型的模型的模型的精确的精确的精确的模型的模型的精确的精确的模型的模型的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的模型的原理,它的原理,它的精确的原理的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的模型的原理