RISC-V open-source systems are emerging in deployment scenarios where safety and security are critical. OpenTitan is an open-source silicon root-of-trust designed to be deployed in a wide range of systems, from high-end to deeply embedded secure environments. Despite the availability of various cryptographic hardware accelerators that make OpenTitan suitable for offloading cryptographic workloads from the main processor, there has been no accurate and quantitative establishment of the benefits derived from using OpenTitan as a secure accelerator. This paper addresses this gap by thoroughly analysing strengths and inefficiencies when offloading cryptographic workloads to OpenTitan. The focus is on three key IPs - HMAC, AES, and OpenTitan Big Number accelerator (OTBN) - which can accelerate four security workloads: Secure Hash Functions, Message Authentication Codes, Symmetric cryptography, and Asymmetric cryptography. For every workload, we develop a bare-metal driver for the OpenTitan accelerator and analyze its efficiency when computation is offloaded from a RISC-V application core within a System-on-Chip designed for secure Cyber-Physical Systems applications. Finally, we assess it against a software implementation on the application core. The characterization was conducted on a cycle-accurate RTL simulator of the System-on-Chip (SoC). Our study demonstrates that OpenTitan significantly outperforms software implementations, with speedups ranging from 4.3x to 12.5x. However, there is potential for even greater gains as the current OpenTitan utilizes a fraction of the accelerator bandwidths, which ranges from 16% to 61%, depending on the memory being accessed and the accelerator used. Our results open the way to the optimization of OpenTitan-based secure platforms, providing design guidelines to unlock the full potential of its accelerators in secure applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员