The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations. More specifically, we first represent rumor circulated on social media as an undirected topology for enhancing the interaction of user opinions, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm to mine effective clues simultaneously from post semantics and propagation structure. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To well-generalize the representation learning using a small set of annotated target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three event-level data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.


翻译:真相正在被大量谣言所阻碍,这些谣言随着突发新闻或热门话题传播。由于在相同领域收集到足够的语料进行模型训练,现有的谣言检测算法在昨天的新闻中表现出了良好的性能。然而,由于缺乏实质性的训练数据和先前的专业知识,它们很难发现涉及意想不到事件的谣言,特别是在不同语言(即低资源时期)中传播的谣言。在本文中,我们提出了一个统一的对比转移框架,通过将从资源充足的谣言数据中学得的特征适应到低资源的谣言数据中,实现了通过仅用少量注释进行训练的低资源谣言检测。具体地,我们首先将社交媒体上传播的谣言表示为一个无向拓扑图,以增强用户意见的交互,然后通过一个统一的对比范式训练多尺度图卷积网络,从帖子语义和传播结构中同时挖掘有效线索。我们的模型通过语言对齐和新颖的领域自适应对比学习机制明确打破了领域和/或语言问题的障碍。为了充分推广使用少量注释的目标事件所学的表示学习,我们揭示了谣言表示信号与这些事件的分布均匀性密切相关。我们设计了一个目标级对比训练机制,具有三个事件级的数据增强策略,能够通过区分目标事件来统一表示。在从真实微博平台收集的四个低资源数据集上进行的大量实验表明,我们的框架比现有的方法实现了更好的性能,并展示了在早期检测谣言方面具有卓越的能力。

0
下载
关闭预览

相关内容

【CVPR2022】UniVIP:自监督视觉预训练的统一框架
专知会员服务
27+阅读 · 2022年3月16日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
EMNLP 2022 | ClidSum: 跨语言对话摘要
PaperWeekly
3+阅读 · 2022年11月25日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
21+阅读 · 2021年12月31日
VIP会员
相关VIP内容
【CVPR2022】UniVIP:自监督视觉预训练的统一框架
专知会员服务
27+阅读 · 2022年3月16日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员