Acute ischaemic stroke, caused by an interruption in blood flow to brain tissue, is a leading cause of disability and mortality worldwide. The selection of patients for the most optimal ischaemic stroke treatment is a crucial step for a successful outcome, as the effect of treatment highly depends on the time to treatment. We propose a transformer-based multimodal network (TranSOP) for a classification approach that employs clinical metadata and imaging information, acquired on hospital admission, to predict the functional outcome of stroke treatment based on the modified Rankin Scale (mRS). This includes a fusion module to efficiently combine 3D non-contrast computed tomography (NCCT) features and clinical information. In comparative experiments using unimodal and multimodal data on the MRCLEAN dataset, we achieve a state-of-the-art AUC score of 0.85.
翻译:急性缺血性中风是血液流向脑组织中断造成的,是造成全世界残疾和死亡的一个主要原因。选择病人进行最优化的缺血性中风治疗是成功的关键一步,因为治疗的效果在很大程度上取决于治疗的时间。我们提议采用基于变压器的多式联运网络(TRansOP)进行分类,采用在住院时获得的临床元数据和成像信息,预测以修改的定级尺度为基础的中风治疗的功能性结果。这包括一个融合模块,以便有效地将3D非多功能计算断层学特征和临床信息结合起来。在使用MRCLEAN数据集的单式和多式数据的比较实验中,我们取得了0.85的AUC公司最新分数。