This paper discusses the R package lpcde, which stands for local polynomial conditional density estimation. It implements the kernel-based local polynomial smoothing methods introduced in Cattaneo, Chandak, Jansson, Ma (2022) for statistical estimation and inference of conditional distributions, densities, and derivatives thereof. The package offers pointwise and integrated mean square error optimal bandwidth selection and associated point estimators, as well as uncertainty quantification based on robust bias correction both pointwise (e.g., confidence intervals) and uniformly (e.g., confidence bands) over evaluation points. The methods implemented are boundary adaptive whenever the data is compactly supported. We contrast the functionalities of lpcde with existing R packages, and showcase its main features using simulated data.
翻译:本文讨论R包件 lpcde, 该包件是当地多面性有条件密度估计, 用于Cattaneo、 Chandak、 Jansson、 Ma (2022年) 中引入的基于内核的地方多面平滑法, 用于对有条件分布、 密度及其衍生物进行统计估计和推断。 该包件提供了点差和集成平均正方差最佳带宽选择及相关点估计仪, 以及基于对评价点进行点( 例如, 信任间隔) 和统一( 例如, 信任带) 的稳健的偏差校正( ) 的不确定性量化方法。 所实施的方法在数据得到压缩支持时具有边界适应性。 我们用模拟数据将 lpcde 的功能与现有的 R 包件进行对比, 并展示其主要特征 。