Eye gaze estimation has become increasingly significant in computer vision.In this paper,we systematically study the mainstream of eye gaze estimation methods,propose a novel methodology to estimate eye gaze points and eye gaze directions simultaneously.First,we construct a local sharing network for feature extraction of gaze points and gaze directions estimation,which can reduce network computational parameters and converge quickly;Second,we propose a Multiview Multitask Learning (MTL) framework,for gaze directions,a coplanar constraint is proposed for the left and right eyes,for gaze points,three views data input indirectly introduces eye position information,a cross-view pooling module is designed, propose joint loss which handle both gaze points and gaze directions estimation.Eventually,we collect a dataset to use of gaze points,which have three views to exist public dataset.The experiment show our method is state-of-the-art the current mainstream methods on two indicators of gaze points and gaze directions.
翻译:在计算机视觉中, 眼视估计越来越重要。 在本文中, 我们系统地研究眼视估计方法的主流, 提出同时估计眼视观察点和眼睛眼视方向的新方法。 首先, 我们建立一个本地共享网络, 以提取眼视点和眼视方向的特征, 这可以减少网络的计算参数, 并快速汇集; 第二, 我们提出一个多视角多任务学习框架, 用于视景方向, 提议对左眼和右眼进行共同计划限制, 用于凝视点, 3个观点数据输入间接引入眼视定位信息, 设计了一个交叉视图集成模块, 提出处理眼视点和眼视方向估计的共同损失。 我们收集一组数据, 以使用凝视点, 有三种观点可以建立公共数据集。 实验显示我们的方法是当前关于眼视点和眼视方向两个指标的主流方法的状态。