Eye gaze estimation has become increasingly significant in computer vision.In this paper,we systematically study the mainstream of eye gaze estimation methods,propose a novel methodology to estimate eye gaze points and eye gaze directions simultaneously.First,we construct a local sharing network for feature extraction of gaze points and gaze directions estimation,which can reduce network computational parameters and converge quickly;Second,we propose a Multiview Multitask Learning (MTL) framework,for gaze directions,a coplanar constraint is proposed for the left and right eyes,for gaze points,three views data input indirectly introduces eye position information,a cross-view pooling module is designed, propose joint loss which handle both gaze points and gaze directions estimation.Eventually,we collect a dataset to use of gaze points,which have three views to exist public dataset.The experiment show our method is state-of-the-art the current mainstream methods on two indicators of gaze points and gaze directions.


翻译:在计算机视觉中, 眼视估计越来越重要。 在本文中, 我们系统地研究眼视估计方法的主流, 提出同时估计眼视观察点和眼睛眼视方向的新方法。 首先, 我们建立一个本地共享网络, 以提取眼视点和眼视方向的特征, 这可以减少网络的计算参数, 并快速汇集; 第二, 我们提出一个多视角多任务学习框架, 用于视景方向, 提议对左眼和右眼进行共同计划限制, 用于凝视点, 3个观点数据输入间接引入眼视定位信息, 设计了一个交叉视图集成模块, 提出处理眼视点和眼视方向估计的共同损失。 我们收集一组数据, 以使用凝视点, 有三种观点可以建立公共数据集。 实验显示我们的方法是当前关于眼视点和眼视方向两个指标的主流方法的状态。

0
下载
关闭预览

相关内容

【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员