We tackle the problem of generating code snippets from natural language descriptions using the CoNaLa dataset. We use the self-attention based transformer architecture and show that it performs better than recurrent attention-based encoder decoder. Furthermore, we develop a modified form of back translation and use cycle consistent losses to train the model in an end-to-end fashion. We achieve a BLEU score of 16.99 beating the previously reported baseline of the CoNaLa challenge.
翻译:我们用CoNaLa数据集从自然语言描述中生成代码片断的问题。 我们使用基于自我注意的变压器结构, 并显示它的表现优于经常关注的编码器解码器。 此外, 我们开发了一种经过修改的背翻译和使用周期连续损失的形式, 以便以端对端的方式对模型进行培训。 我们的BLEU分数为16.99, 超过了先前报告的CoNaLa挑战基线。