Neural networks have shown great predictive power when dealing with various unstructured data such as images and natural languages. The Bayesian neural network captures the uncertainty of prediction by putting a prior distribution for the parameter of the model and computing the posterior distribution. In this paper, we show that the Bayesian neural network using spike-and-slab prior has consistency with nearly minimax convergence rate when the true regression function is in the Besov space. Even when the smoothness of the regression function is unknown the same posterior convergence rate holds and thus the spike-and-slab prior is adaptive to the smoothness of the regression function. We also consider the shrinkage prior, which is more feasible than other priors, and show that it has the same convergence rate. In other words, we propose a practical Bayesian neural network with guaranteed asymptotic properties.
翻译:在处理图像和自然语言等各种非结构化数据时,神经网络显示出巨大的预测力。 Bayesian神经网络通过预设模型参数的先前分布和计算后方分布来捕捉预测的不确定性。 在本文中,我们显示,在Besov空间出现真实回归函数时,使用前尖峰和玻璃的Bayesian神经网络与接近微缩的趋同率是一致的。即使回归函数的平滑性未知, 同样的后方趋同率仍然维持不变, 因此, 先前的峰值和板块会适应回归函数的平滑性。 我们还考虑到先前的收缩率, 这比以往更为可行, 并表明它具有相同的趋同率 。 换句话说, 我们提议一个实用的Bayesian神经网络, 有保证无症状特性。