We resurrect the infamous harmonic mean estimator for computing the marginal likelihood (Bayesian evidence) and solve its problematic large variance. The marginal likelihood is a key component of Bayesian model selection since it is required to evaluate model posterior probabilities; however, its computation is challenging. The original harmonic mean estimator, first proposed in 1994 by Newton and Raftery, involves computing the harmonic mean of the likelihood given samples from the posterior. It was immediately realised that the original estimator can fail catastrophically since its variance can become very large and may not be finite. A number of variants of the harmonic mean estimator have been proposed to address this issue although none have proven fully satisfactory. We present the learnt harmonic mean estimator, a variant of the original estimator that solves its large variance problem. This is achieved by interpreting the harmonic mean estimator as importance sampling and introducing a new target distribution. The new target distribution is learned to approximate the optimal but inaccessible target, while minimising the variance of the resulting estimator. Since the estimator requires samples of the posterior only it is agnostic to the strategy used to generate posterior samples. We validate the estimator on a variety of numerical experiments, including a number of pathological examples where the original harmonic mean estimator fails catastrophically. In all cases our learnt harmonic mean estimator is shown to be highly accurate. The estimator is computationally scalable and can be applied to problems of dimension $\mathcal{O}(10^3)$ and beyond. Code implementing the learnt harmonic mean estimator is made publicly available.


翻译:我们重现了用于计算边际概率( Bayesian 证据) 并解决其问题巨大的差异的无名的调和平均估计值。 边际可能性是Bayesian 模型选择的关键组成部分, 因为它需要评估模型的外表概率; 然而, 其计算具有挑战性。 最初由 Newton 和 Rafey 首次于1994 和 Newton 和 Rafey 提议 的调和平均估计值, 包括计算从远端点采集的样本的可能性的调和平均值。 立即意识到原估算值可能灾难性地失败, 因为其差异会变得非常大, 并且可能不会是有限的。 调和平均估计值模型中的一些变异性, 虽然没有被证明完全令人满意; 我们展示了经校正值的中间值值, 也就是将测算法的变异性, 也就是将测算结果的精确度的变异性, 也就是将结果的变异性。 我们的测算法是用来对数值进行。

0
下载
关闭预览

相关内容

【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
25+阅读 · 2021年1月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员