Instance-aware segmentation of unseen objects is essential for a robotic system in an unstructured environment. Although previous works achieved encouraging results, they were limited to segmenting the only visible regions of unseen objects. For robotic manipulation in a cluttered scene, amodal perception is required to handle the occluded objects behind others. This paper addresses Unseen Object Amodal Instance Segmentation (UOAIS) to detect 1) visible masks, 2) amodal masks, and 3) occlusions on unseen object instances. For this, we propose a Hierarchical Occlusion Modeling (HOM) scheme designed to reason about the occlusion by assigning a hierarchy to a feature fusion and prediction order. We evaluated our method on three benchmarks (tabletop, indoors, and bin environments) and achieved state-of-the-art (SOTA) performance. Robot demos for picking up occluded objects, codes, and datasets are available at https://sites.google.com/view/uoais
翻译:虽然以前的工作取得了令人鼓舞的成果,但是它们仅限于对看不见物体的可见区域进行分解。对于在混乱的场景中进行机器人操纵,需要一种现代的观念来处理其他隐蔽物体背后的隐蔽物体。本文述及未见物体现代分解(UOAIS),以探测(1)可见面具,(2)现代面罩,(3)隐蔽物体实例的隔离。为此,我们提议了一个等级隔离模型(HOM),目的是通过对特征聚合和预测顺序进行分级来解释隔离。我们在三个基准(台式、室内和垃圾环境)上评估了我们的方法,并实现了艺术状态(SOTA)性能。在https://sites.google.com/view/ooaais上提供了采集隐蔽物体、代码和数据集的机器人演示。