Transparent objects are common in our daily life and frequently handled in the automated production line. Robust vision-based robotic grasping and manipulation for these objects would be beneficial for automation. However, the majority of current grasping algorithms would fail in this case since they heavily rely on the depth image, while ordinary depth sensors usually fail to produce accurate depth information for transparent objects owing to the reflection and refraction of light. In this work, we address this issue by contributing a large-scale real-world dataset for transparent object depth completion, which contains 57,715 RGB-D images from 130 different scenes. Our dataset is the first large-scale real-world dataset and provides the most comprehensive annotation. Cross-domain experiments show that our dataset has a great generalization ability. Moreover, we propose an end-to-end depth completion network, which takes the RGB image and the inaccurate depth map as inputs and outputs a refined depth map. Experiments demonstrate superior efficacy, efficiency and robustness of our method over previous works, and it is able to process images of high resolutions under limited hardware resources. Real robot experiment shows that our method can also be applied to novel object grasping robustly. The full dataset and our method are publicly available at www.graspnet.net/transcg.
翻译:透明天体在我们日常生活中很常见,并且经常在自动化生产线中处理。 强有力的视觉机器人捕捉和操作这些天体将有利于自动化。 但是,目前大多数掌握的算法在此情况下将失败,因为它们在很大程度上依赖深度图像,而普通深度传感器由于光的反射和折射,通常无法为透明天体提供准确的深度信息。 在这项工作中,我们通过提供大规模真实世界数据集来解决这个问题,以透明天体深度完成,该数据集包含130个不同场景的57,715 RGB-D图像。 我们的数据集是第一个大型真实世界数据集,提供了最全面的注释。 跨域实验显示,我们的数据集非常依赖深度图像, 而普通的深度传感器由于光的反射和折射,通常无法为透明天体天体提供准确的深度信息。 在这项工作中,我们通过实验显示我们的方法比以往工作更优、更高效和更稳健,并且能够在有限的硬件资源下处理高分辨率的图像。 真正的机器人实验显示,我们的方法也可以被公开地应用到 www 目标系统 。