Background: Previous studies have shown that up to 99.59 % of the Java apps using crypto APIs misuse the API at least once. However, these studies have been conducted on Java and C, while empirical studies for other languages are missing. For example, a controlled user study with crypto tasks in Python has shown that 68.5 % of the professional developers write a secure solution for a crypto task. Aims: To understand if this observation holds for real-world code, we conducted a study of crypto misuses in Python. Method: We developed a static analysis tool that covers common misuses of 5 different Python crypto APIs. With this analysis, we analyzed 895 popular Python projects from GitHub and 51 MicroPython projects for embedded devices. Further, we compared our results with the findings of previous studies. Results: Our analysis reveals that 52.26 % of the Python projects have at least one misuse. Further, some Python crypto libraries API design helps developers from misusing crypto functions, which were much more common in studies conducted with Java and C code. Conclusion: We conclude that we can see a positive impact of the good API design on crypto misuses for Python applications. Further, our analysis of MicroPython projects reveals the importance of hybrid analyses.


翻译:: 先前的研究显示, 高达99.59% 的 Java 应用程序使用加密 API 使用加密 API 至少一次滥用 API 。 然而, 这些研究是在 Java 和 C 上进行的, 而其他语言的经验性研究却缺失。 例如, Python 的加密任务受控制的用户研究显示, 68.5% 的专业开发者为加密任务撰写了安全解决方案。 目标 : 为了了解这个观测是否维持真实世界代码, 我们进行了 Python 中加密滥用的加密应用研究。 方法 : 我们开发了一个静态分析工具, 覆盖了 5 种不同的 Python 加密 API 的常见滥用。 我们分析了 GitHub 的895 流行 Python 项目, 和 嵌入设备的51 微波子项目 。 此外, 我们的分析显示 Python Pypto 项目的52 至少有一次误用 。 一些 Python 图书馆 API 设计有助于开发者误用加密 Pypto 函数, 我们的正确分析了 Calto 。

0
下载
关闭预览

相关内容

CRYPTO:International Cryptology Conference。 Explanation:国际密码学会议。 Publisher:Springer。 SIT:http://dblp.uni-trier.de/db/conf/crypto/
【干货书】Python 编程,480页pdf
专知会员服务
235+阅读 · 2020年8月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【干货书】Python 编程,480页pdf
专知会员服务
235+阅读 · 2020年8月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员