Transformers with remarkable global representation capacities achieve competitive results for visual tasks, but fail to consider high-level local pattern information in input images. In this paper, we present a generic Dual-stream Network (DS-Net) to fully explore the representation capacity of local and global pattern features for image classification. Our DS-Net can simultaneously calculate fine-grained and integrated features and efficiently fuse them. Specifically, we propose an Intra-scale Propagation module to process two different resolutions in each block and an Inter-Scale Alignment module to perform information interaction across features at dual scales. Besides, we also design a Dual-stream FPN (DS-FPN) to further enhance contextual information for downstream dense predictions. Without bells and whistles, the propsed DS-Net outperforms Deit-Small by 2.4% in terms of top-1 accuracy on ImageNet-1k and achieves state-of-the-art performance over other Vision Transformers and ResNets. For object detection and instance segmentation, DS-Net-Small respectively outperforms ResNet-50 by 6.4% and 5.5 % in terms of mAP on MSCOCO 2017, and surpasses the previous state-of-the-art scheme, which significantly demonstrates its potential to be a general backbone in vision tasks. The code will be released soon.


翻译:具有显著全球代表性能力的变异器在视觉任务方面实现竞争性结果,但未能考虑投入图像中的高水平本地模式信息。 在本文中,我们提出了一个通用的双流网络(DS-Net),以充分探索本地和全球图像分类模式特征的代表性能力。我们的DS-Net可以同时计算精细和集成的特性,并有效地结合这些特性。具体地说,我们提议了一个内部升级模块,以处理每个区块的2个不同分辨率,以及一个跨系统调整模块,以便在双尺度上进行不同功能的信息互动。此外,我们还设计了一个双流FPN(DS-FPN),以进一步加强下游密集预测的背景资料。没有钟声和哨,支持的DS-Net超越了Deit-Small,在图像Net-1k的上一级精度中以2.4%的速度计算出Deit-Small。我们提议了一个内部升级模块模块,用于处理每个区块的不同分辨率和ResNet。关于目标探测和实例分解,DS-S-Smarall将分别以6.%和5.5%分别比对ResNet-50显示Resweforforformat-50进行背景预测,在201717的模型中将很快显示前的MAS-ass-ass-scmat-com-screal-scma-scmaxx-st-scmaxxx-st-st-st-stal-stal-stal-stal-stal-stal-stal-stal-stal-scrial-scrial-scrodulegal)。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉领域顶会CVPR 2018 接受论文列表
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
8+阅读 · 2021年2月1日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉领域顶会CVPR 2018 接受论文列表
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员