The current integrated sensing, communication, and computing (ISCC) systems face significant challenges in both efficiency and resource utilization. To tackle these issues, we propose a novel fluid antenna (FA)-enabled ISCC system, specifically designed for vehicular networks. We develop detailed models for the communication and sensing processes to support this architecture. An integrated latency optimization problem is formulated to jointly optimize computing resources, receive combining matrices, and antenna positions. To tackle this complex problem, we decompose it into three sub-problems and analyze each separately. A mixed optimization algorithm is then designed to address the overall problem comprehensively. Numerical results demonstrate the rapid convergence of the proposed algorithm. Compared with baseline schemes, the FA-enabled vehicle ISCC system significantly improves resource utilization and reduces latency for communication, sensing, and computation.
翻译:暂无翻译