Regional aggregates of health outcomes over delineated administrative units (e.g., states, counties, zip codes), or areal units, are widely used by epidemiologists to map mortality or incidence rates and capture geographic variation. To capture health disparities over regions, we seek "difference boundaries" that separate neighboring regions with significantly different spatial effects. Matters are more challenging with multiple outcomes over each unit, where we capture dependence among diseases as well as across the areal units. Here, we address multivariate difference boundary detection for correlated diseases. We formulate the problem in terms of Bayesian pairwise multiple comparisons and seek the posterior probabilities of neighboring spatial effects being different. To achieve this, we endow the spatial random effects with a discrete probability law using a class of multivariate areally-referenced Dirichlet process (MARDP) models that accommodate spatial and inter-disease dependence. We evaluate our method through simulation studies and detect difference boundaries for multiple cancers using data from the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute.
翻译:地区划分行政单位(例如州、州、州、拉链代码)或地区单位的卫生结果汇总,被流行病学家广泛使用,以绘制死亡率或发病率的分布图,并捕捉地理差异。为了了解各地区的卫生差异,我们寻求“差异边界”,将相邻区域区分开来,具有显著不同的空间影响。问题在于每个单位的多重结果,我们捕捉疾病之间的依赖性,以及各个区域单位之间的依赖性。这里,我们处理相关疾病的多变量边界探测问题。我们从巴伊西亚对对等多重比较的角度提出问题,并寻找相邻空间效应的后方概率差异。为了实现这一目标,我们利用国家癌症研究所监测、流行病学和最终结果方案的数据,通过模拟研究和检测多种癌症的差异界限,评估我们的方法。我们通过使用不同变量的多变量参考Drichlet(MARDP)模型来消除空间随机效应,并使用离散概率法处理适应空间和不同症状依赖性。我们通过模拟研究来评估我们的方法,并用国家癌症研究所监测、流行病学和最终结果方案的数据来检测多种癌症的差异界限。