A modern computer system, based on the von Neumann architecture, is a complicated system with several interactive modular parts. Quantum computing, as the most generic usage of quantum information, follows a hybrid architecture so far, namely, quantum algorithms are stored and controlled classically, and mainly the executions of them are quantum, leading to the so-called quantum processing units. Such a quantum-classical hybrid is constrained by its classical ingredients, and cannot reveal the computational power of a fully quantum computer system as conceived from the beginning of the field. Recently, the nature of quantum information has been further recognized, such as the no-programming and no-control theorems, and the unifying understandings of quantum algorithms and computing models. As a result, in this work we propose a model of universal quantum computer system, the quantum version of the von Neumann architecture. It uses ebits (i.e., Bell states) as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit. As a digital quantum system, its global configurations can be viewed as tensor-network states. Its universality is proved by the capability to execute quantum algorithms based on a program composition scheme via a universal quantum gate teleportation. It is also protected by the uncertainty principle, the fundamental law of quantum information, making it quantum-secure distinct from the classical case. In particular, we introduce a few variants of quantum circuits, including the tailed, nested, and topological ones, to characterize the roles of quantum memory and control, which could also be of independent interest in other contexts. In all, our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems in the near future.


翻译:以 von Neumann 架构为基础的现代计算机系统是一个复杂的系统,包含多个互动模块部件。 量子信息作为最通用的量子信息使用,迄今为止遵循混合结构,即量子算法是传统存储和控制的,主要执行量子算法是量子处理器的模型。 这种量子古典混合受到其古典成分的制约,无法披露从一开始就设想的完全量子计算机系统的计算能力。 最近,量子信息的性质得到了进一步承认,例如不编程和不控制量子信息的最通用使用,以及对于量子算法和计算模型的统一理解。 因此,在这项工作中,我们提出了一个通用量子计算机计算机系统模型,即量子处理器的元素,以及量子控制器的元素。 在数字量子系统中,其全球配置可以被看成接近量子网络的量子数据, 以及统一对量子算法和计算模型的理解。 其普遍性被证明, 其基础的量子量子序列的构建能力, 也通过一个特殊的量子序列, 将一个特定的量子序列的量子序列构造, 用于我们的基本量子的量子的量子的量子研究系统。 的量子的量子学中, 的量子中, 的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子系统, 也通过一个基础 的量子的量子系统, 的量子的量子的量子的量子的量子的量子学系,, 的量子的量子的量子的量子系, 的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子的量子的计算体系的计算系统,,, 的计算系统, 的计算法的计算法的计算法的计算法的计算法系, 的计算法的计算法的计算法的计算法系,, 的计算法系, 的基的基的基的基的基的基的基的基的基的计算法的量子的量子的基的量子的量子的量子的基的基的量子

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月19日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员